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FRACTURE CRITERIA FOR MATERIALS WITH DEFECTS* 

L.N. GERMANOVICH and G.P. CHEREPANOV 

Classical theories of the strength of materials start from concepts of 

the existence and uniqueness of fracture surfaces in the space of 

indpendent loading parameters: on approaching a certain point of this 

surface from within along any arbitrary loading path, the instant of 
fracture is fixed by the very same combination of loading parameters. 

Such are all the strength criteria appied in the strength of materials 

(in stress space), for instance, Galileo, Poncelet, Coulomb, Tresca, 
Saint-Venant, Cloore, Mises, etc. /l-16/. This concept turned out to be 

valid even from the viewpoint of fracture mechanics in the case of active 

loading paths /17/. 

Analysis of these concept in the case of two (and more) independent loading parameters 

and for any loading paths is of interest fromtheviewpoint of modern fracture mechanics 
according to which the fracture of real materials is explained by the development of cracks 
in them from certain initial defects. The most widespread kinds of initial defects here are 

obviously pores and cracks. Representative of crack and pore materials are concrete, ceramics, 

composites, mountain rocks and other geomaterials for which the representation of a fracture 

surface is used extensively at present to describe their strength. 
We consider below two problems of fracture mechanics with two independent loading 

*Prikl.Matem.Mekhan.,51,2,330-340,1987 
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parameters: the development of an isolated crack under the effect of concentrated forces and 
homogeneous tension, homogeneous compression and tension of a porous material. It is shown 

by these examples that a fracture surface does not generally exist: the set of fracture limit 
points does not form a surface in the space of loading parameters in the general case, b,Jt a 
certain volume (later called the fracture continuum), i.e., depending on the loading path, 
and fracture can either occur or not occur at a given point of the continuum. 

It is shown that in a numer of cases catastrophe theory can be applied to the analysis 
of the fracture process. The introduction of a potential function of a specific kind enables 
us to examine a broad class of multiparametric problems of fracture mechanics within the 
framework of catastrophe theory. The application of the Drucker postulate and the concept 
of a fracture surface in investigationsofthe strength of materials is discussed. 

1. An isolated crack subjected to concentrated forces and homogeneous 
tension. We consider first the best-known example /17/ whose artificiality is redeemed by 
its simplicity (see Sect.4 also). Let concentrated forces P be applied to the edges of a 
rectilinear crack of length 2L in an infinite body. At infinity the body is loaded by a 
tensile stress p (Fig.la). The fracture and the crack are considered to be brittle. 

Fig.1 

We study the development of the crack in the three-dimensional space L,p,P. The stress 

intensity coefficient at the end of the crack /18/ equals Kl=p lfnL+ PlF/x in this case 
/17, 181. For the case of a mobile-equilibrium crack it equals the fracture toughness K, 
(a certain constant of the given material 118,'). 

It is convenient to introduce the dimensionless intensity coefficient kl=KIIK, and the 
dimensionless crack length l=LIL,, and to take the dimensionless quantities 

Q=PJ(K, jLz1, Q=PI/ZYIK, 

as independent loading parameters, where &is the initial crack length. Then 

k,==qV/i-+Q/1/% (1.1) 

and later the domain l> 0, q>O, Q>O is considered in the space 1, q,Q. For a moving- 

equilibrium crack Q c/i-j- Q/f/t= 1, i.e., its length equals 1, and I_ where 

ljz (9, Q) = I(1 f 1/l - 4qQ)~(~qN" (1.2) 

The line of intersection 1 of the surfaces l+(q,Q) and l_(q, @ lies on a hyperboloid 
4qQ = 1; the crack length 1 here equals $/(4$). We consider a section of the surfaces (1.2) 
by planes q = con&. It is seen that in such a section the curve 1, is convex while 1_ is 
concave (Fig.lb). 
JQZ 

In the section Q=const the curve 1, decreases from infinity to the value 
while the curve I_ grows from the value Q2 to the value 4Q2 (Fig.l.c). The general form 

of the surface is shown in Fig.2 (the surface !+(g,Q) is the upper, and i_ (q,Q) the lower), 
The condition of stable crack growth, which has the form aglar < 0 /15/ in the 

general case, will be the following: l<Q/q in this problem according to (l.l), i.e., the 
surface 1, (q,Q) = Q/q separating the stability and instability domains is between the 
surfaces I, (q.Q) and l_(q,@ (the dashed line in Figs.lb and c). All three surfaces have 
the common line of intersection I; in addition, the surfaces I+&, Q) and t_(g,Q) intersect 
along the q axis. 

Therefore, the surface l_(q,Q) corresponds to stable crack growth, and the surface 
1, (q,Q) to unstable crack development, in this case to the appropriate global fracture (crack 
propagation to infinity). 

The process of crack development in the space E,q,Q can be described as follows. Let 
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I= 1 be the length of the initial crack and let a certain loading process be realized, which 

is understood to be a change in the parameters Q and Q (q=O,Q=O, at the initial instant), 
and to which a certain line (Fig.3) corresponds in the plane l=l. When this lineistangent 
to one of the surfaces l+(q,O) or l_(q, Q), the crack goes over into a moving-equilibrium state. 

If this is the surface 1,(4, Q) (the dashed line in Fig.3), then fracture is of a catastrophic 
nature. If this is the surface Z_(q, Q) (the solid line in Fig.3), then under further loading, 
when 

(a@?) dq + (WaQ) dQ > 0 (1.3) 

stable crack growth is possible and motion of the imaging point occurs along the surface 

I_ (4, 0). when 

WJq) dq + W8Q) dQ = 0, dq < 0, dQ < 0 (1.4) 

unloading results in the fact that 

on the l axis (see Fig.2). 

4’ 

Fig.2 

the imaging point moving rn the plane I= const returns 

It is hence clear that any point within the triangle 

OAB in Fig.3 can be a point of global fracture since 
loading can always be realized in such a manner that the 

imaging point will not return on the surface I_ (S Q) but 
will arrive at the surface 1,(4, Qf (the latter corresponds 
to unstable crack development, i.e., to global fracture). 

It should be noted that not taking account of possible 

unloading paths would of necessity result in the existence 

of a single fracture surface /17f in the space y,Q. As 

is seen, in the general case of any loading paths, a 

fracture surface does not exist: fracture can occur at 

any point of the domain F in the (I, Q plane for a suitably 

selected loading path (i.e., the fracture continuum F in 

this example will be bounded by the lines C) = 0, Q = 0, 

qQ = 'I,, qtQ=l, hatched in Fig.3). 

Fig.3 

2. Homogeneous compression and tension of a porous material. We consider a 

problem that can be the basis for the fracture model of porous materials /19/ under biaxial 

compression-tension. 

As is well-known, in the compression of brittle bodies with a hole, stable cracks grow 

form the latter and are oriented along the line of compressive action. This kind of fracture 

has been observed both in models /20/ and in real materials /19/. 
In an infinite space let there be a cylindrical pore with two crack branches emanating 

from it along the pore diameter at opposite points of the latter, and let the space be 

compressed at infinity by a stress a,,>0 and stretched by a stress CT% 20 oriented as 

shown in Fig.4a. Let the pore radius be R, and the length of the branches L-R. Thestress 

intensity coefficient at the ends of the branches can be written in the following form from 

dimensional analysis considerations 

Here h, (1) and A1 (I) are certain functions that are found numerically in a number Of 

papers, for instance in /19, 21/. 
We approximate the numerical results of /19, 21,' by the following dependences 

_- 
b(J)= 

0.58J1--1 l--1 E--0,21 
(1-0.1)~ ’ 
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b 

Fig.4 Fig.5 

with not more than 6% error for A, and 17% for h, (for the most essential values I< 1$1.7 
for later, the approximation error for h, does not exceed 10%). We specially do not take 
too complex and more exact approximations since the purpose is to demonstrate the general 
properties of phenomenological fracture criteria. 

We rewrite (2.1) in the form 

The connection between the independent loading parameters for a moving-equilibrium 
brittle crack will here have the form 

P& 0) + !7& 0) = 1 V> 0, P > 0, q > 0) (2.2) 

This is a surface S in the three-dimensional space l,p, q. For small crack lengths (i.e., 
for I - 1<1) the equation of the surface S can be writtenas follows: I= 1 +(O.%p -I- 2.38q)+ 
and this surface is obviously realized for large values of at least one of the parameters p 
and g. In the case of large crack lengths, sections through the surface S by the planes 
q=const and p=const have the form shown in Fig.4b and c. They are meaningful for large 
p and small q. 

The surface separating the stability and instability domains is given by the equation 
p&‘(i)+ q&‘(l)=0 (8kI/aZ= 0) and is easily investigated analytically for large 1. The 
projection of its line of intersection I with S on the 1,~ plane is given in this case by 
the equation 1= 1.65p'J*. The projection I'of the line I on the plane of the parameters p,p 
for large 1 has the form p= 0.65Jqs, which is meaningful for small g. 

In this case, however, unstable crack growth still does not mean catastrophic fracture. 
In fact, a comparison with the dependence kl(Z) for different values of the parameters p 
and q shows (Fig.5) that those parameters p and q for which (2.2) in 1 has one or two 
solutions will correspond to catastrophic fracizure. If it has three solutions, then either 
the moving-equilibrium crack is stable or it grows unstably to a stable length, or (for the 
greatest value of 1) unstable global fracture occurs. The general form of the surface S 
and the lines I and I' is given in Fig.6. The part K of the surface S bounded by the line I 
and the lines of intersection of S with the coordinate plane &p corresponds to stable 
equilibrium of mobile cracks. The points of the transition of the single-valued domain of 
the function 1 (p,q) into the tri-valued domain is a singular point of the surface S, which 
we denote by M. It is obviously determined from the solutionofthe system akIlal=O, 8SkI1812= 
0, which takes the following form in this case 

Ph,’ (2) + &,’ (4 = 0, Phi” (I) -I- q&A’ (I) = 0 (2.3) 

Equating the determinant of this system to zero, we find 2. Then using (2.2) and any of 
the Eqs.(2.3), we find p and q. We obtain the following coordinates of the point M: 1~1.6, 
pc1.8, qzo.84 as a result of a numerical computation. 

The crack development process in this space l,p,q can be described now as follows. Let 
E* be the length of the initial crack and let a certain loading process be realized which we 
understand to be a change in the parameters p and q by following the exposition in Sect.1 
p=o,q=o at the initial instant). A certain line T corresponds to the loading process 
in the plane E= I,. When this line is tangent to the surface S, the crack goes over into 
the moving-equilibrium state. Elotion of the imaging point along the projection T' of the 
line T in the p,q plane corresponds to the loading process in the space of the loading 
parameters p, q. 
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Fig.6 Fig.7 

In Fig.Ja we show the projection I' of the instability curve I (the line DM’E), and 

the lines kr=ph,(Z,) -I- ph,(lo)= 1 (the segments AR, A,B,, A,B,) which when reached by the 
line T' the crack goes into the moving-equilibrium state. 

It is seen that if the length of the initial crack is sufficiently large (L,,>a~l.2) 
the line kr= 1 is tangent to the line I' at one point. If I, > b ;= 1.6, the pointoftangency 
C lies on EM’ while if 1,< b the point of tangency C, lies on EM’. If I= b the point 
of tangency is the point M' (as is seen from Fig.7b, where the appropriate construction is 
made to scale). The line kr= 1 here (A,B, intersects DM’ at the point E,). 

If the initial crack length is sufficiently small (&<a) there are no pointsoftangency 
and the line k~= 1 (A,B,) intersects I' at a point Es lying on DM'(excluding the case 1, = a 

when E is the second point of intersection). 

We will now examine the loading process for a sufficiently long initial crack length: 

1, > a. If the imaging point is tangent ot the surface S outside the zone K bounded by the 

line I and the line of intersection of S with the coordinate 1,p plane Z,p,q space, then the 

crack turns out to be in a state of unstable equilibrium and complete catastrophic fracture 

occurs. If the imaging point turns out to be on the part K of the surface S, equilibrium 

of the mobile crack will be stable. Under further loading (condition (1.3)), stable crack 

growth is possible to a certain length lr> l,, when the imaging point moves all the time in 

the domain K (if it reaches the line I, total fracture will occur). Unloading (the relation- 

ship (1.4)) enables us to return the imaging point to the 1 axis in l,p,q space as it 

moves in the plane i=l,. Under further loading (again condition (1.3)), it is always 

possible to take the imaging point out to the surface S outside the zone K. Then total 

fracture occurs. 

The following correspond to the process described in the p,q plane. If the imaging point 

in the loading parameter space is tangent to the line /cl = 1 below the point of tangency of 

this line with the projection K' of the domain K in the p,q plane (i.e., touches the segment 

BC or B,C&, total fracture will occur. In the opposite case (in which the imaging point is 

tangent to the segment AC or A,C,) the crack turns out to be in a stable moving-equilibrium 

state and will remain there even under further loading when the imaging point moves within 

the domain K' cross-hatched in Fig.7a. If it touches the upper boundary of the domain K' (DC 
for lo> b and DE, for lo< b), total fracture will occur. Unloading can be realized dif- 

ferently, by returning the imaging point to the origin. 

NOW, let l,,<a. In this case tangency of the imaging point in l,p,q space to the 

surface S in the single-valued or double-valued domains is equivalent to total fracture (the 

imaging point in the p,q plane is correspondingly tangent to the segment E.&J, of the line 

kI =I, i.e., to the line A,B,). If it touches s in the tri-valued domain (the segment A,E, 
in Fig. Ja), the crack also starts to be developed unstably but only to a stable length since 
the imaging point moving parallel to the 2 axis will again be incident on the surface S but in 
the stable crack domain K. (The imaging point in the p,q plane does not alter its position 

since the loading parameters are fixed here.) NOW, the crack length is l>U and all its 

further development is analogous to that described above. 

Therefore, any point within the shaded domain in Fig.7 can correspond to one of the 
following four processes depending on the loading path and the initial crack length: no crack 
growth; stable crack growth; unstable crack growth to a stable length; and total catastrophic 

fracture. 
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it is seen that in the case considered the fundamental deduction of Sect.1 remains valid: 
in the general case of arbitrary loading paths there is no loading surface but a certain 
fracture continuum F exists (which is bounded by the coordinate axes, the boundaries of the 
domain K' and the line ph,(Z,)+qh,(Z,)= 1 in this example). 

3. Application of catastrophe theory in fracture mechanics. The problems 
studied show that when there are two or more loading parameters the crack development process 
is substantially complicated and acquires completely new qualitative features not inherent in 
the one-parameter problems. Multiparameter problems of a single crack can be considered 
within the framework of catastrophe theory by using a potential function of the following kind 

where c is a variable length dimension (governing the location of the crack front B),p~,pp,..., 
Pn are loading parameters, P is the specific energy flux on the crack front which is equal 
in magnitude to the rate of elastic energy liberation, PC is the critical value of P for 
a moving-equilibrium crack, and dB is the arclength element of the crack front. The quantity 
r is determined by using the stress intensity coefficients (K,,K,,,K,,,) on the crack front 
in the following way /15/: 

P = (Zp)-'l(i - y) (X,2 + h;,? + $,,I (3.2) 

where p is the shear modulus, and it is Poisson's ratio of the materialinwhich the crack is 
located. 

Values of the intensity coefficients are found from solutions of the elastic problem: 
they are certain functions of c and the loading parameters Pl? PP, . . '9 Pnr 

According to catastrophe theory /22/, the conditions aVlac==0 which result in the equation 

P (c, pi, pa, . . ., ~4 = rc (3.3) 

correspond to the equilibrium position. 
This is the local fracture condition that is satisfied at the front of a movable equilib- 

rium crack /15/. 
Local crack development is stable if dW/&*> 0 (i.e., artac < 0). If awaG*< (i.e., 

ariac > o), then the local crack development will be unstable. The boundary of the stability 
and instability domains has the form aWas= 0 or equivalently 

arlac = 0 (3.4) 

The set of parameters PI,JJ~~...,~,, governing the unstable crack growth (the catastrophe 
set /22/) is determined by system (3.3) and (3.4). Since the Hessian of the function Vagrees 
with awlas in this case, this means that the system (3.3), (3.4) determines the degenerate 
critical points of the function V (of non-Morse type), as it should be if it followscatastrophe 
theory /22/. 

Let us examine the examples selected above from this viewpoint by using the terminology 
of catastrophe theory /22/. 

In the second example (Fig.4a, 6, 7) the curve of the folds I of the surface of critical 
points S of the function V separates the set of Morse and non-Morse critical points of the 
function V. The projection on the plane of the control parameters p and q is the bifurcation 
curve I' which always has a singular return point M' (Whitney's theorem on catastrophe mapping), 
which is a node point: the projection of the beginning of K on the plane of control parameters. 
Therefore, an elementary canonical node catastrophe is realized in this example. The projection 
K' of the set K of non-Morse critical points of the function V on the plane of the control 
parameters (catastrophe set) is bounded by the bifurcation curve I' and is shaded in i"ig.7a. 
Since K' is simultaneously the projection of two "univalent" sets of Morse critical points 
of the function V, it hence follows that any point of the domain K' on the plane of control 
parameters can correspond to at least two states of system equilibrium, stable and unstable, 
depending on the loading path. 

In the first of the examples chosen above (Figs.1 and 3), the situation is more simple 
since the set of non-Morse points is the line of intersection of the surfaces l,(q,~) and 
Z-(9, O), i.e., this is a fold line (there is no assembly, a catastrophe of fold type). 

It should be noted that catastrophe theory cannot completely replace the formulation and 
solution of boundary value problems in the mechanics of brittle fracture; in a number of cases 
it is a convenient language of analysis. 

4. Limiting fracture surface, the Drucker postulate, It was shown above that 
there is generally no limiting fracture surface (FS), but a certain fracture continuum exists. 
However, the concept of a limiting FS has become widespread in engineering practice (see /l- 
16/, 23-31/, say, and the bibliography cited here) and attempts continue both to obtain a FS 
experimentally /25, 27, 28, 31/ and their best description by relying on a formal-geometric 
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construction 13, 12, 28, 31/ and different assumptions of a physical nature /lo, 23-271. The 
following meaning can obviously be appended to this: if the set of loading paths in the space 

of the loading parameters is such that the fracture continuum is a sufficiently thin layer or 
degenerates into a surface, then it is possible to speak about the concept of a limiting FS 
by keeping in mind, however, just this set of loading paths and not any other. Thus, in 
certain active loading cases, the fracture continuum actually degenerates into a surface (see 

/17/j. However, in the general case of the fracture of materials with defects it is impossible 
to consider such a deduction to be sufficiently well founded. Indeed, since the geometry of 
defect (crack) development depends on the loading path, there are no sufficient foundations 

to expect degeneration of the fracture continuum into a FS in the general case, even for active 

loading. 

Note that the method of constructing strength criteria for a given kind of loading has 

already been encountered in engineering practice /24/. 

Convexity of the limiting FS /7, 10, 26,' is usually postulated when constructing different 
theories of strength (the Drucker postulate /32/, non-compliance with it is often considered 
a basis for acknowledging the strength criterion to be erroneous) although there are individual 

doubts about the validity of this situation /9, 31/. It is clear from the above that the FS 
can even be concave with any radius of curvature. Indeed, any geometric surface (convex, 
concave, or planar) located in the fracture continuum, can be a FS for any suitably selected 
set of loading paths. 

1n this connection, it should be emphasized that inthespecific examples considered above, 

a two-dimensional fracture continuum was obtained and not a one-dimensional FS because not 

only loading (1.3) but also unloading (1.4) was achieved. However, in the case of loading 
the E'S (now completely defined) is concave. This is seen clearly in both the first exmaple 
(see Fig.3 presented above and Fig.8 in /17/J and the second example (Fig.7b). 

Therefore, transfer of the Drucker postulate from plasticity theory to the theory of 

strength does not have sufficient foundations and can result in error in a number of cases. 

In conclusion we consider still another generalization of the approach developed above 

to the questions selected. In addition totheclassical space 0 of the loading parameters, 

we introduce a space of all parameters of the problem n. Thus in the first of the examples 

considered O= {a! Q}, II= {I,q,Q}, h'l w i e in the second example @= {p,q},n={l,P,q). Therefore, 

n includes not only the loading parameters but also parameters of the material defects, 

where the space 6 of the loading parameters is a subspace of n. 

We introduce the E'S sn for materials with growing defects in the space n. This surface 
divides the space n into two parts and is a set of points for which the condition of defect 

development (condition (3.31, say) is satisfied. As follows from the examples considered, 

its dimensionality is dim Sn =dim II - 1. 
For such a definition the FS is completle definite and unique. It is divided into three 

domains: the domain of total fracture of the body as a 

of defects with a subsequent arrest, and the domain of 

last two domains can even be missing. 

1n the first example sn = l,Ul,, and in the second 

whole, the domain of unstable growth 

stable defect development, where the 

sn = s. 

- 

Fig.8 

According to classical representations, the FS is inserted into the space@ and is a 

set of points Se corresponding to total fracture of the body, and its dimensionality is dim 

Se=dimO -1. This paper shows that this is not always true in general; cases are possible 

for which dim Se=dim@. In this case &'a is called the fracture continuum F above. 

In a number of cases, catastrophe theory can be applied to analyse the projection of Su 

on 8 (by using the potential function introduced above, say), which will often (see /22/J 

facilitate analysis of multiparametric problems encountered in applications since the whole 
diversity of real situations is reduced successfully to a moderate numberofwell-studied 

schemes by using catastrophe theory. In the case of two-parameter problems only catastrophes 

of the node and fold type /22/ are possible. Consequently, the particular problems considered 

above have a common nature and reflect the fundamental qualitative features of the two- 
parameter loadings that result in fracture. 
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Thus, the generalized fracture surface for tension-compression of cracking material (Fig. 

8) is qualitatively similar to that displayed in Fig.2. This follows from the fact that an 

inclined crack in a homogeneous material grows stably under compression, being oriented along 

the compression axis /33-35/ (in certain cases /36/* (*See also: Dyskin A.V., Effective 

deformation characteristics and fracture conditions for solid bodies with a system of oriented 

cracks: Candidate Dissertation, Inst. Problems of Mechanics, USSR Acad. Sci., 1986 (where the 

idea from /36/ is developed and used successively) a crack growing stably under compression 

is modelled by a slit whose edges are loaded by a pair of concentrated forces as in the first 

example examined above), and unstably under tension oriented perpendicular to the tension 

axis /37/. Consequently, in this case we have a fold-type catastrophe. If, however, the crack 

under compression grows unstably at the initial instant, then a node appears on the fold 

(Fig.6). 

Let us note again that the dimensionality of the fracture continuumis dimF=dim 0 = 2 
in the examples considered, which is due to the possibility of stable crack growth. In these 

cases when stable crack growth is impossible /38/, fracture will be determined only by the 

global fracture surface into which F has degenerated and which can consequently even be convex 

(non-concave) /38/. Namely, the possibility of stable crack growth results in a change in 

their lengths, i.e., a change in the parameter of the material structure which is therefore 

a latent parameter in the classical approach. 

Transfer of the Drucker postulate to the case of assigning the fracture surface Sn in 

the space n isnot, strictly speaking, legitimate as is seen clearly from an examination of 

Figs.2 and 6. However, this is a common deduction that follows, in particular, from the 

geometry of assembly-type catastrophes /22/. Moreover, it follows from the examples selected 

that more often the concavity postulate, which can be formulated as follows: a non-degenerate 
fracture continuum F(dimF=d im@) is bounded by a concave (non-cave) surface SF, is valid 

for a fracture continuum rather than the convexity postulate. 

Other physical reasons for the concavity of Sn and SF, different from those considered 

here, will be the subject of further study. 

The authors are grateful to V.S. Nikoforovskii, E.I. Shemyakin and E.N. Sherfor discussing 

the research and to artist M. Dubrovin for constructing the surfaces in Figs.2 and 6. 
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